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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECENICAL MEMORANDUM 1241

BASIC DIFFERENTTIAL EQUATIONS IN GENERAL THEORY OF
ELASTIC SHELIS*
By V. S. Vlasov

1. Coordinates. - The shell shall be considered as a three-
dimensional continuous medium; for the coordinate surface, the mid-
dle surface of the shell shall be assumed parallel to the bounding
surfaces. Let o and B be the curvilinear orthogonal coordi-
nates of this surface, coinciding with the lines of principal cur-
vatures, and y the distance along the normal from the point

(a,B) of the coordinate surface to any point (a,B,y) of the
shell (fig. 1).

The square of the line element in spatial orthogonal curvi-
linear coordinates is given by the formula

2 2 2
dsz - da . 4ap . dy

> 2 2
h1®  hp® hz

(1.1)

where hy = hy(a,B,7), hp = hy(a,B,7), and hz = hz(a,B,7) are
the so-called differential parameters of the first kind represent-
ing for the chosen coordinates given functions of «,B,7.

In the triorthogonal system of coordinates chosen as indicated:

1 )
by = A(1+k17)
R S & (1.2)
ha = B(1+kp7)
hg =1 y

where A = A(a,8) and B = B(a,B) are the coefficients of the
first quadratic form; and where kj = ki(a,B) and ko = ko(a,B)

are the principal curvatures of the coordinate surface on the lines
corresponding to B = constant and o = constant, respectively.

*"Ognovnye Differentsialnye Uravnenla Obshche Teorii Uprugikh
Obolochek," Prikladnaia Matematika I Mekhanika. Vol. 8, 1944,
pp . 109-140 .
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The magnitvdes h,;, hy, A, B, k;, and kp are connected
by the relations

-
- -1
B\ e e ) T e
-1
L 2~ 13m g (1.3)
1 % " Ad
-1
233 B OB y

obtained from the equations of Lamb for the differential parameters
hi, hp, and hz defined by equations (1.2) and from the equa-
tions of Codazzi

% (18) = Iy &
S S (1.4)
A
5 (k18) = kp 3
From equations (1.2), (1.3), and (1.4) follow the equalities:
-1 -1 -1
L dmp am 3%n, )
L% 2y dy
> (1.5)
o IS P |
. oh;  ohp 0°hy
2% 3y  opdy )

2. Fundamental Equations of Three-Dimensional Problem of Theory
of Elagticity. - The six components of the strain tensor of a dense
medium are determined, in the system of coordinates assumed, by
the equations
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du 3h, "t 3n, " R
€qq = hy — + hqhy ug + hy S Uy
eBB = hz —a—B—- + h1h2 -B;'-‘- U.a + hz 67 u.),
o
677 = 5-;—-
> (2.1)
hy 3 by 3
Oup = By (hpug) + EI 5B (hyuy)
1 a Buy
= =~ — (h ho —&
1 9 ou,
= —— h h -

where u, = uy(a,B,7), ug = ugl(a,p,7), anmd u, = u,(a,B,7) are
the components of the displacement vector of the point (a«,B,y) on
the axes of the orthogonal trihedron, the vertex of which is at the
point (a,B,y) and the faces of which coincide with the planes
tangent to the surfaces o = constant, B = constant, and

v = constant. The positive direction for the displacements cor-
responds to the direction of increase of the coordinates o, B, 7.

Equations (2.1) are ootained from the general formulas of the
theory of elasticity given for example in the book of L. S. Leiben-
son (reference 1) for hz = 1.

The equatlions of equilibrium of the general problem of the the-
ory of elasticity in the coordinates of the shell are presented in
the form
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1 -1
I P L (Im), 3 (D8), 3 (% Py
hy, Oy hy Oy da \hs o \hq oy \hjhy / hiho
(2.2)

where O and T are the normal and tangential stresses. The sub-
scripts denote, for normal stresses, the direction of the outward
(in the direction of increase of the corresponding coordinates)
normal to the corresponding surface; for the tangents, they denote
the surface of action of these stresses taken in pairs from the
conditlons of their reciprocity. The components of the stress
tensor are considered positive if, when applied to the surface with
positive outer normal, they are directed toward increasing coordi-
nates. The magnitudes Pys Pgs and p in equations (2.2) are
the components of the vector of intensity of the volume forces.
Equations (2.2) are obtained from the general equations of the the-
ory of elasticity given for example by Love (reference 2) for
h, =1

3 .

In the theory of shells, the stresses O, Ogs Tap = Tpas
applied normal to the section and lying in a plane tangent to
v = constant, are determined from the six stress components
expressed in terms of the strains. The remaining three components
of the stresses are found from the conditions of equilibrium.
From Hooke's law, only the three relations referring to the
stresses Oj, Ogp, and Tap 8Te retained; these relations are

given in the form

OG, = ()\+2p) A - 2'.1 (GSB‘F'G—)"),)T

Op = A+2u) A - 2p (qwa+e77) ? (2.3)

TaB = TBQ‘ = peaB J
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where A is the volumetric dilation and A and p are the coef-
ficients of elasticity of Lamé.

The equations of equilibrium (2.2), on the basis of equa-

tions (2.3) and (2.1) after a number of transformations using, where

required, the relations (1.3), (1.4) and (1.5), are given in the
form

ou T P
1 oA _ 1 90X _ of1 7) o) ay @
(A+2p) hp S 2u h_l S5 + 2uABKu, - 2u ﬁy h——2 S5 +hy 5 12}12 +hlh2_

0

ou T D
1 A 19X o[l Yy o[ "By B
(M2u) q BE+2M }'1‘2' g;+ ZuA;BKuB -2u By(hl 3B >+ h, a7<hz 2h1>+h1h2‘0

—2(M2u) (B+K7) ABA + 24 E% (Bkpug) + gag (Akyug) + 2ABKu7] v

ou T T o
By, o ([ xm), (), [ Py .
44 AB (H+Ky) 55 = (hz )+ 5o (hl ) + 5 <hlh2 )+ hyny =0

(2.4)

where K = K(a,B) and H = H(a,B) are the Gaussian and mean cur-
vatures of the coordinate surface, respectively.

K = klkz

1 (2.5)
H = 5 (kl+k2)

The volumetric expansion and the normal component (the pro-
jection on the normal to the surface ¥ = constant) of the ele-
mentary rotation of the shell are denoted by A = A(x,B,y) and
2X = 2X(e,B,7), respectively. In the following discussion 2X
shall be denoted simply the normal rotation. The volumetric expan-
sion and normal rotation are determined in terms of the displace-
ments uy, U, and Uy in the coordinates of the shell by the

formulas

J
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(2.6)
o (U \_ 3 [%)
2X = hyh, $<h2> aB<h1)

Equations (2.4) in orthogonal coordinates for hz = 1 are the
general equations of equilibrium of an elastic body. The first two
of these equations express the tangential equilibrium of the three-
dimensional element dadde/hlhz of the shell, that is, the equi-~
librium of this element in the plane tangent to the surface
vy = constant. The last equation refers to the equilibrium of this
element in the direction of the outer normal to the surface
v = constant. Equations (2.4) differ from the equation of the gen-
eral problem of the theory of elasticity in displacements or
strains in the fact that each of them contains both static and
kinematic magnitudes.

3. Displacements and Strains of the Shells. ~ The theory of
shells is based, as is known, on the hypothesis of Kirchhoff-Love
according to which a rectilinear element normal to the middle sur-
face of the shell remains, after deformation,rectilinear normal to
this surface and of the same length. This hypothesis is equivalent
to the agssumption

Sqy = OBy = ©yy = O (3.1)

and leads, for the displacements uy, ug, and u, of an arbi-
trary point (a,B,y) to the formulas

Uy = (1+ky7) u - %

(3.2)

¥ ¥

= -
ug = (L+koy) v 3

Uy =W Y

where u = u(a,p) and v = v(a,B) are the tangential displacements
(in the direction of the tangents to the lines B = constant and
o = constant) of the point (a,B) of the coordinate surface, and
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W= w(a,B) is the displacement of the same point in the direction
normal to this surface, positive in the direction of increasing
coordinate ¥y (fig. 25.

For the purpose of presenting a more accurate theory valid
not only for shells of medium thickness but also for thick shells,
another hypothesis, which is a generalization of that of Kirchhoff-
Love, will be used.

It shall be considered that each of the three components g,
ug, and Uy is represented as a function of y by a linear law,
gsetting

ow
u, = (1+k7) u - % < ~}

ow > (3.3)
= (1l+k vV - yAi
Yg ( 27) 5

Uy =W+ yw¥ J.

where u, v, and w have the same values as in equations (3.2);
w* = w*(a,8) 1is a magnitude that depends, like u, v, and w,
only on the two variables ao,B and is the relative elongation of
a normal element of the shell (constant under the assumption made
here over the entire length of this element). It is easy to see
that with equations (3.3) equations (3.1), which express the funda-
mental hypothesis of the present theory of shells, do not apply.
With the introduction of the deformation of elongation w* of a
normal element of the shell, all the six components of the strain
tensor (2.1) receive values different from zero.

Equations (3.2) establish the kinematic model of the deformed
state of the shell. This state, in the general case, is made up of
two states of which the first is determined only on the tangential
displacement wu,v of the point of the coordinate surface (w, w*
in this case being equal to zero) and in the second only by the
normal displacement w and the elongation w* (u,v 1in this case
being equal to zero). The deformation of the shell determined only
by the tangential displacements u,v shall be denoted the tangen-
tial deformation for briefness. This deformation is characterized
by the fact that an arbitrary point of the surface 7y = constant
after deformation does not go beyond the limits of this surface as
a two-dimensional space. An elementary layer of the shell dy for
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a tangential deformation does not change its shape and position in
space and undergoes deformations of length and shear at the sur-
face 7 = constant as a two-dimensional space (in the general case
for K # O non-Euclidean). A deformation of the second kind
determined only by the normal displacements w and the elongation
w¥ wlll be called a normal deformation of the shell. For this
deformation, an arbitrary point («,B,y) of the surface 7 = con-
stant passes with respect to this surface into the third dimen-
gsion. A normal deformation is accompanied by a change in shape

of the surface.

In setting up the kinematic model determined by equations (3.3)
for all six components of the deformation tensor, by virtue of
equations (2.1) end (1.2), a definite law of variation with thick-
ness of the shell is obtained.

Representation of e, epg s and ®ap in the form of series

in the variable 9y gives
}‘ n )
= €1 + Xln Y

n

€2 +§ Xon 7
\
n
Oqp = W+ EE Th 7

(n=1,2,3, . ..)

@
I

L}

e
Be (3.4)

where the coefficients of the series ¢, €5, W, Xyp, Xops

and T, each depends only on the displacements wu, v, and w¥
of the point (a,B) of the coordinate surface. By substituting
the displacements uy, ug, and u, determined by equations (3.3)
on the right-hand sides of the corresponding equations (2.1) and
then by representing the magnitudes hj, hp, and thelr ratios
(direct and inverse) in the form of series
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2.2 3 3
hl = % (l - kl'}' + k]_ Yy - kl Y o+ . .. ) W
2.2 3 3
ho = %.(1 -kpy + koY -k o+ .. L)
h (3.5)
1 B 2 2.3
—_— = [l - (kl-kz)(7 - k17 + kl Y T e e ] T
h, A
hy a 2 2.3
_—- = |1 + (kl— kz)('}' - k27 + kz Y = e e . )
hy B )

and referring to the last two of relations (1.3) and relations (1.4),
after a number of transformations for the coefficients of the ser-
ies (3.4) the following equations are obtained:

e =10, 1 0A, g
1 A8a+ABSBv+ v W
cz=%%u+%§_§+k2w
w=42(u),B2(u
Bopg\Aa Ao \B
X1 = (-1)n-1kf—l?_l.{_l.ﬂ+aklv-k12 Lo (Low) 1 OASW, o ux
|0 A OB B Adx \Adw/ ,p2 OB OB
n-1 n-17§k2 u 9%k ¢ 10 (1w 1 OB ow
Xon = (1) kg yz*rg'kzw‘ga‘s'(g'az)';;a‘;a*kﬂ*

. e — " — —— —

(3.8)

VT
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The remaining strains Cays By’ and €yy depend only on w¥.
After expanding them in a series in powers of 7,

qy = (y - klyz + k1273 - ... ) i ggi ~W
L 3.7
eBy = (7 - kz')'z + k2273 - e e e ) %g_gi ( )
Syy = WX J )

In the following discussion, formulas for the volume expansion &
and the elementary rotation 2X will be required. When these mag-
nitudes are also represented in the form of series in powers of vy

E n
AO + Any
Xo +:£: xnyn

Then by making use of equations (2.6) and (3.5) after a number of
transformations, using relations (1.3) aud (1.4) for the coefficients
of the series (3.8), the following formulas are obtained:

[>d
H

(3.8)
X
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Ao=el+§2+w*:A.}§ .a%(Bu)+§E’E(Avﬂ+(kl+k2)w+w* A

A

Pt L n1 %)y a1 |10 (1aw), 1 dadw
Lo 7% &) |ax\ia)t 52 o

- -1 ok -1 ok
An = Xln + in = (-l)n 1 <kln 1 \__.].'_ + kzn 1 _2_. u +
Oo da

OB

-1 1 o /1 éE) 1 9B ow o BFL n+l n n
2 EB'BB<B3B +A236aaa (k17 "+ kg T )w o+ (k1T + ko )w

/

4. Analysis of Kinematic Relations. Corrections and Additions

(3.9)

to Theory of Love. - Equations (3.4) and (3.6) for the components
of the deformations have & common character and were obtained in
correspondence with the hypothesis (3.3) assumed for the displace-
ments. For w* = O from equations (3.3, 3.4, and 3.8), there are
obtained equations for the displacements and the deformations of
the shell having an inextensible normal element and following the
hypothesis of Love (3.2). The magnitudes X;;, Xp1, and Tq,
defined by equations (3.6) for n=1 and w* = O and the first
two representing bending deformations (variation of the principal
curvatures kp and kz) and the third the torsional deformation,
differ from the corresponding magnitudes Xi, Xz, and T , which
were used by Love. By setting w* = 0 in the last three equa-
tions of (3.6),
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X _5k1u+3k1v_kzw_1a(1aw>_ 134 v )
=Ttz "1 vl Gwnll Bl vallovy
d« A OB B A Qo \AOCx/ ABZ OB OB
okp Ok 2 13 /Ld)\ 1 3Bw N
R At RE AR 3 Rl
" g 22 ()22 (1)) 2 % _13Bw 1AW
1717215 56 \a) 2 % \B)| 2B\ o A ox OB B 3 3o

From these equations, it follows that for tangential deforma-
tions (in the case w = O) the changes in curvature X;;, and Xp;
are determined as linear algebraic expressions relative to the dis-
placements u and v with coefficients proportional to the partial
derivatives of the principal curvatures k;, and kp of the unde-
formed surface. The expression for the torsional deformation will,
as i1s to be expected, be symmetrical with respect to the coordinates.
The same properties, as seen from equations (3.6), are possessed
also by the remaining components X,,, Xp,, and T, for
n=2,3 4, ... . Inoparticular, for the spherical shell a
result is obtained that generalizes in a certain serise the theory of
the bending deformation of a plate as based on the hypothesis of
Kirchhoff. This result can be formulated in the following theorems:

Theorem I. - The deformations of slongation and shear a0
epg, and eys and the volume deformation A of a spherical shell
in the case of tangential deformations (that is, for w = 0) are
uniformly distributed over the thickness of the shell (do not depend
on y) and are determined only by the deformations of elongation
and shear €;, €, and w of the middle surface. An exception
to the uniform distribution of the magnitudes e, o3 s and ®ap

over the thickness of the shell arises only as a result of normal
displacements. A change in the shape of the spherical shell char-
acterized by the parameters of the change in curvature Xq1, X7,

and T 1is due only to the normal displacement w.

Theorem II. - The normal rotation 2X of the spherical shell
is determined only by the tangential deformation (the variables u
and v) and remains constant over the thickness of the shell. 1In
the case of normal deformation, the normal rotation 2X is equal
to zero.

This result, obtained on the basis of the analysis of the gen-
eral formulas of the preceding section for the spherical shell, may
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be arrived at directly in the following manner. It is assumed that
the spherical shell as a deformed body is, at one of its bounding
surfaces (for example, the inner), in contact with a rigid spheri-
cal base so that an arbitrary point of the shell can be freely dis-
placed along the surface of this base without going outside the
limits of this surface. Such a model corresponds to the case of
tangential deformation of the shell. Now at the point («,B)

some normal section of the shell, in general arbitrary with respect
to the chosen coordinate lines a and B, is assumed. The lin-
ear normal element, as the shell passes into the deformed state,
remains, by the Love hypothesis, normal to the base surface and
takes on a new position determined by the rotation of this element
with respect to the center of curvature (in the case of a sphere,
common for all normal elements). Let M;'Mp' be the projection

on the plane of the chosen sectlion of the element M;M; after
deformation (fig. 3). Further let €= M;M;' denote the projection
on the plane of this sgection of the vector of the total displace-
ment of the lower point M; of the element. Then the displace-

ment E7 = MM' of an arbitrary point M of the element M;M; in

the plane of the chosen section will be equal to

where k = 1/R 1s the curvature of the inner surface of the shell
and vy 1is the distance of this surface to the point M considered.
The corresponding elongation of the tangential element

ds = (1+ky) RAP is determined by the equation

2k,

°= os

= R(1+lk7) 5% [(.l+k7)€] = % (4.3)

From equations (4.2) and (4.3), it follows that whereas the
tangential displacement ¢ of the spherical shell is a linear
function of the coordinate’ y, the deformation of elongation e
does not depend on 7. The same result can also be obtained
directly from equations (2.1) for the deformations e, o5 s

and OB for the values entering the following formulas:

'
=
it

ko = k = constant

1
1 + ky (4.4)

(L+Xxy)u
(1+ky)v

5

Bho =

o
(]

]
W
il
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In the same way on the basis of the second of equations (2.6),
the second theorem can be proven.

In constructing this theorem, Love represents the components
of the deformation eqy,, epg > and B in the form of linear

expressions relative to the parameter 7.

Oqq = €1 + le
eBB = 52 + XZ',V (4'5)
€gp = W+ Ty

and for the parameters of the change in curvature X;, X,, and T
gives the equations

10 1 oA 10 (1low 104 ow
¥1= 35 taw) + sg‘kzv)'Aa(AaJ‘mz 3 58 )

)} 19 _l9 (low) L oBow
xz"ABaa(klu)+BaB (kZV) B OB (B 38/~ AZp da da (4.6)
=2 ey LTy _Lé_(;é_z)+_l__§_ééz

T Ao G Ad 1 A \Bog/ %R dB o p,

These equations differ essentially from equations (4.1). The
magnitudes X3, X2, and T determined by Love as coefficients of
the second members of equetions (4.3) are in contradiction to the
theorems Just proven for the spherical shell. The difference noted
here in the determination of the magnitudes X, X,, and 7T by
equations (4.1) and (4.6) is explained by the fact that Love and
other authors (in particular, Timoshenko (reference 3)), following
Rayleigh, start from the assumption of the inextensibility of the
middle surface. This assumption stands in certain contradiction
with the geometry of extensible and flexible surfaces.

In recent years a number of papers have appeared that refine
to a greater or less extent the theory of thin shells of Love.
The most interesting and original of these are the investigations
of Krauss (reference 4), N. A. Kilchevsky (reference 5), and
A. I. Lurie (reference 8).

5. Fundamental Differential Equations of Equilibrium of Elastic
Shells. - The general equations of a shell possessing deformable
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normal elements is obtained by reducing the three-dimensional prob-
lem of the theory of elasticity to two-dimensional starting from
equations (2.4), retaining in the series (3.8) the first three
terms, and applying the principle of Lagrange corresponding to the
kinematic hypothesis (3.3).

An element of the shell ABBdadf, having an infinitely small
area ABdadB on the middle surface and a finite length & equal
to the thickness of the shell, possesses according to the kinematic
model seven degrees of freedom; namely, Six degrees with respect to
the displacements of the element (three linear and three angular)
in space as a rigid body, and one degree characterized by the
change in length of the element. Corresponding to these degrees
of freedom seven equations of equilibrium must be obtained. Of
these equations, the first six refer to the equilibrium of the
element in space as a rigid body and the seventh may be obtained
by equating to zero the work of all the external and internal
forces of the element ABSdadB against displacements and deforma-
tions corresponding to the unit elongation w* = 1. It should be
noted that the equations of equilibrium of an element may also be
obtained on the basis of the principle of virtual displacements by
equating to zero the sum of the work of all the forces (in the
given case only the external, because the element is considered as
a rigid body) for each of the six possible unit displacements.

By the method assumed here, one of the conditions of equilib-
rium of the element as a rigid body, namely the condition corres-
ponding to the rotation of the element about the normal to the mid-
dle surface and given in the theory of Love, the sixth nondiffer-
ential (relative to the shearing forces and torsional moments) is
satisfied identically because of the relation Tgp = Tgq used in

deriving the general equations (2.4).

Thus, starting from equations (2.4) and applying the principle
of virtual displacements, it will be necessary to obtain for an
element of the shell only six equations, one of which (called above
the seventh) according to its physical meaning represents the gen-
eralized condition of equilibrium of the element AB3dadp having
a strain w¥*¥ expressed as a function of 7.

Substituting in the left sides of equations (2.4) the dis-

placements u,, Ug and U, according to equations (3.3), the

volume dilation and the normal increment A and X according to
equations (3.8) (in which it is neceasary to retain only the first
three terms, that is, to 7% inclusive and reject the others) and
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hy1 and hp according to equations (1.2), three expressions are
obtained each of which contains terms with powers of 9y wup to the
third inclusive.

The three magnitudes thus obtained represent, according to
their physical meaning, the components along the axes of the mova-
ble trihedron on the surface "y = constant of the vector of the
external force acting on the three-dimensional element of the

she1l 2048

hjhp
v, w, W%, Ag, By, By, Xg, Xy, and X, and static magni-
tudes Toas Tygs Oys Pgs Py and Dy - In passing to the two-
dimensional element of the shell AB®dadf, the work of all the
forces acting on this element and determined in this manner must
be equal to zero on each of the five possible displacements as a
rigid body.

dy and expressed in terms of the kinematic magnitudes

Corresponding to these displacements and by virtue of hypothe-
sis (3.3), each of the first two equations of (2.4) must be by
dy and iy and the third by dy, integrated with respect to ¥

between the limits 7y = =~ % 8 to vy =+ % 5, and the result

equated in each case to zero. Thus five equations are obtained
containing in addition to terms with the kinematic magnitudes u,
v, w, w%, Ay, A1, b2, Xp, X1, and Xz also terms with the
transverse forces Ny and N, arising from the tangential

stresses T%m and T?B’
+ % BT W
1 i
Ny =5 o 47
1 2
-5 o) g
1 (5.1)
+ =9
2
T
A h
L1t J
z2

In order to obtain the sixth equation corresponding to the lin-
ear strain of w¥ of the normal element of the shell, the left
side of the third equation in (2.4) must be multiplied by »dy
and the integral of this expression between the limits

Y = - % 5 to 7y =+ % 8 equated to zero. When it is remembered
that
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1 1 1
+ =3 =93
5 . + 5 o) + >
0
S5k ) - | ot
hihp

0
L - —L d 5.2
o y hyiy y (5.2)
where the first term refers to the work of the external and the
gecond to the work of the internal normal forces of the element ABS
for the normal displacements Uy = yw¥ for w¥ =1, determining

Tyas Tyg, @nd O, in terms of the deformations by the equations

1 1 1
-z =30 -8

Ty = u(r-kpr%) L gz*
Tyg = u(7-kgy 2y ; gz* (5.3)

gy = K(AO+A17+A272) + 2uw*

and representing the remaining terms of the third equation of (2.4)
in the form of a finite series in powers of 7, an equation is
obtained in which the unknown will be only one of the kinematic
magnltudes.

Thus there are six equations with respect to 12 functions,
the four basic functions u, v, w, and w*, the six func-

tions Ay, 8y, Az, Xg, Xp, and X; giving the coefficients

of the first three terms of the series (3.8) and the two transverse
forces Ny and Ny.

These equations, upon eliminating the forces N; and Np,
reduce to four equations. Neglecting the small terms with k216 /12

k2252/12 and kjkp5°/12 1in the expressions 1 + k18°/12,
1+ x%,6°/12, eand 1 + k1kod /12 finally
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o
L2 (ad - (mzw) 82 (kag+Eny) -
3B \B 6 1772

O oB
2 2 2
) o) 5 1 )9 1 ow
“Mo - B by -h gg by +u ‘e‘za{s; ez (10 - £ 8-
d 1av Ml 82 1[5 /B owr) o /4 owr 1
Sl g B AEGE) S35 2 rbe -
(5.4)

where X = X(a,B8), Y = Y(a,B), and Z = Z(a,B) are the components
on the axes of the movable trihedron of the vector of surface
intensity of the load computed for the stresses Tays Tpys and gy

on the boundary surfaces vy = % d, 7y = - % d and for given volume

forces DPq, Pg, @nd P, by the formulas
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~N
h+%8 +%—'6
P T
X = !L{ ——EL-dy + | 2L l }
AB 1 5 hyhs hyhy 11 5
VT2 2
h+%5 +%8
y=21 _EE_.dy + IQZ_ } r (5.5)
-2 -2
1 1
f"+§5 +§8
P
Z:-l'_ .-.Ld_y.{. .EL
ABJ 1 . bihp hihy 11
--2-5 -§5
J

The magnitudes m, = m,(x,p) and mg = mg(a,B) are the
moments of all the forces (surface and volume) relative to the
axes o,B of the movable trihedron of the middle surface:

1 1
+50 +5 8 7
P T
m, = L [ —B_ yay +| B2 4 }
8B | 1 bo hyh, 1
-5 8 - 58
L (5.6)
1 1
+§'5p +§5
1 o ay
R — yd —e
B AIB{ nihy 27 T iong, 7 }
1 5 12 172 1 5
-z - )

Finally the magnitude 2* = Z*(a,B) is the new generalized
static magnitude corresponding to the elongation of the normal ele-
ment and determined by the equation

+ 8 + % ta)
. P a7
7% = 3;{ X vy + V4 (5.7)
2 50
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In the case where only surface forces act on the shell, the
first components in equations (5.5) to (5.7) drop out.

To the equilibrium equations (5.4) must be added the egquations
for the components Ay, Ay, and Ay of the volume dilation and

Xo» Xy, and X2 of the normal rotation. According to equa-
tions (3.9),

1|3 9 ]
AO*ABI:BC(. (Bu) +aB (Av) | + 2Hw + w*

OHu OHv) 1|O(Bow\, o (Aow 2 .2
b1 - 2(5; At ‘EE:(K aa) % (a asﬂ S 1ecz)v e

MO a0 @ aly T [ (L), L dAw
Ap = zéa(kl+k2) Y, (K"1+k"2) 2 +kl[8@<AB@) z 6853]+

(13 l@ﬁ) 1 Bw _
Xg = E%{ﬁ[% (Bv) - 5 (AuEl
B Jd (v A O [u
ne- 320 550)
X ot |22 (Y)4n é_a.(g)+azw SlMw 1B w
11 % B OB \A 0B A OB O B da O
(5.8) -/
In equations (5.4) and (5.8),
K = kikp
L= %— (kq-ko)

Equations (5.4) together with equations (5.8) form a complete
system of differential equations of the shell. To these equations
the boundary conditions for each particular case must be added.
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For this purpose, the internal generalized forces must be
determined. These forces, corresponding to the degrees of freedom
of the normal. deformable element, will in any normal sections of
the shell consist of the tangential (normal and shearing) forces T
and S acting in the plane tangent to ¥ = 0 and corresponding
to the displacements of the element parallel to this plane, the
trangverse force N directed along the normal to 7y = 0O and cor-
responding to the displacement of the element along the normal to
the middle surface 7y = 0, the bending and torsional moments G
and H corresponding to the angular displacements of the element
with respect to the tangent axes of the movable trihedron and,
finally, the new generalized (statically equivalent to zero) trans-
verse force N¥ corresponding to the elongation of the normal
element.

All of these forces, with the exception of the transverse
force N, can be expressed in terms of the fundamental kinematic
magnitudes u, v, w, and w*¥ by setting up the work of all
(tangential and normal) stresses of the normal section considered
over unit displacements of the normal element, translational in
the tangent plane, translational in the direction of the normal
to the middle surface, angular relative to the axes in the tangent
plane, and in the displacement of the points of the element u, = w¥y
for w¥* = 1.

For the internal forces on the two basic normal sections

a = constant and B = constant (fig. 4), the following equations
are obtained:
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1
~+ 2—5 \
1 9 82
:E }TZ- dy = (h+2p)8 g + 1z (kz-kl)xl]+ }\5(€2+W*)
J-z®
~+ Ll
1 2 % 82
K h— dy = ()\+2|J.)5 [Ez + -1-2— (kl-kz)x2]+ }\6(€ 1+w*)
-l 1
vo2
~+ ,1%6
T 52
1
J-z38
~+ L o)
2 . 2
1 o)
J-35 8
At %8
1 o 5°
-3 . = ydy = - = A +2u) (X1+kp €7) + N(Xp+kpep+kowk)
2
J-35?0
~+ -]é'- tS)
1 GB 53 )
Y 1 E'I ydy = - EBA+ZM)(Xz+k1€2) +A (X1+k1€1+klw*)]
J- =9
+ L o)
& 3
1 po ud°
= £ iy = (Ty+kow)
B | 1 R hy 127t 1772
2
+ L o)
¢ 4 3
1 9)
-k 2 gy = - 82 (1 ak0)
L™
2
1
+ 7z 8
1 Ty us” 1 dwx
53|, B VY kZim
-55
2
+ %8
1L T8 4, . u80 L 3w
A 1 h 12 B o8 /
- é- 8

6.1



NACA ™ 1241 23

In these equations, ™
ey = & ou + 104 v + kyw
17 A AB OB 1
13,1
€0 = B u + B % + kow
mgéi(?ﬁ),,léi(‘i)
Bop\A/ ACa\B
oky , Ok 2. 13 (13w 1 OAdw
TR AT 5"‘1"'5&?(}&)'@5‘3‘5 e
Okp y Skp v 2 13 /1w 1 OB dw
X ?K*‘a—s”i'kz"ﬁ%@%)'ﬁé;&? 2

- R 2 (R)-22 (]2 ﬁ-;?ﬁé&-.l.éﬁé%
1= e BBB(A) Aaa(B AB \Oadp A da OB B OB &

(v) Stk < 3% _1 0B dw 1 dA aw>

o —— O — o— S———

dadf A da OB B OB du
(5.11) —

Depending on the character of the problem, the boundary con-
ditions may be purely kinematic, purely static, or of the mixed type.

In the case of kinematic conditions for the normal element of
the shell and the boundary surface, there must be given in the boun-
dary surface three displacements of the midpoint of the element
along three mutually perpendicular directions, the angle of rotation
of the element relative to the tangent to the contour curve of the
middle surface and finally the normal displacement of any other
point of the element. Altogether there will be five independent
kinematic conditions, which together with the fundamental equa~
tions (5.2) and (5.8) make the problem entirely determinate.

If the boundary conditions are given in terms of stresses,
there will be in this case five independent conditions, the four
usual conditions of the moment theory and one with regard to the
generalized (statically equivalent to zero) transverse force N¥.
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6. Shells of Medium Thickness. - By neglecting in equa-
tions (5.4) and (5.8) the small terms with tangential displace-
ments u and v, which contain as factors the products of the cur-
vatures kj; and k2, and their derivatives for the shell of medium
thickness

w* = 0 A
= Ev_
A 117 ? (6.1)
E
P YE T J

and neglecting, in correspondence with this the last equation of (5.4)

1 (BAO 52 OAy g2 6A2> 9 _<axo , & 3%y , & ax2>
A

> 'elx TE& TG T

0

-
+
=
7~
)
1
> |od
gy
+
- +—
mle
[xV]
~
i
el
<+
f

Oy 2 . X g2 axz)
*‘1'“’x<§a“+?kzx+féaa—“+

+

(B0, o, 3, o %)
B \ 0B 6 OB 12 OB

0]

"

(1-) <Kv . Bl g‘B’> = " (eiemy)

12AB{|: Zaa aa_-(lv)K_>—(l-v)kl :‘
A oA

aﬁl:<1a;30+361 (1u)K-§-‘é)+(1v)k2 {B

(KA1+HA2) - 2HAg + (1-v) = |:2ABKW + — (Bkpu) + (Aklv)jl

1 )
S R

82

(6.2)



NACA TM 1241

where now

1 |9 o)
AO:EEg(Bu)+g§(AVZ] + 2Hw

L
2AB

i

[aa‘; (Bv) - 65—8 (Auil

2 = A OB oo B dx OB

For the internal tangential forces and the moments,

: 2
ES [ &
1y = B ey wvep - B o)y
1 1 2 1-kz)%
1-vF 12
ES 52 o ko)X
T2=-—? €2+U61+I§(1"2)2
]_-
2
ED [ )
S, = w+ B85 (kT 4T )]
L TERD) 2 21l e
2
ES 8
So = - )+ = (k7947
2 2(1+v) [w 1z 1M Zﬂ
G = __E8° [Xl + kpeq +U(X2+k3€2)]
12(1-1%)
3
Go = - B [Xg + ky1€2 + v(xl+kl€l)]
12(1-1%)
£SO
H, = T14+kow
17 24(T+ ) (Ty+kpw)
3
ES
H = - T, +k.@
2= " mmy ()

T

25

(6.3)

r (6.4)
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vhere the strains €;, €5, Wy Xy, X3, T, and T, are deter-

mined by equations (5.11), in which (fourth and fifth) w* must
be set equal to zero,

Equations (6.2) to (6.4) refer to shells of medium thickness
and were obtained with an accuracy up to terms with 83/12 in
strict correspondence with the fundamental assumption (3.2) because,
in the first place, the given equations (4.1) for the components
of the changes in curvature X;, X5, and T;, in contrast to
equations (4.6) of Love are accurate; and in the second place,these
equations contain additional terms_arising from the moments, namely,
the terms with A,83/12, and X38°/12, which are absent in the
present moment theory constructed on the basis of the magnitudes e

oo ?
egg, and ey 1in the form of equations (4.5) and not in the form

2
0qe = € + X117 + X127

"

2
e €, + X217 + X227 (6.5)

BB

e 2

af

"

W+ Ty + Ty

which lie at the basis of the theory given here. This theory and
the more general one given in the preceding section and referring
to thicker shells is in full agreement with the fundamental theorems
of the theory of elasticity, in particular, with the theorem of
reciprocal work, which, as shown later for the example of a cylin-
drical shell, does not correspond to the theory of Love.

7. General Technical Theory of Thin Shells. Two methods of
Solution of the Problem. Generalization of the Maxwell and Sophie
Germalin-Lagrange Equations., - For thin shells, further simplifi-
cation of equations (6.2) to (6.4) is possible. Eliminating from
equations (6.2) the functions Ag, Ay, Az, Xg, X, and Xp
with the aid of relations (6.3), three equations are obtained in
the three functions u, v, and w. The first two of these equa-
tions, when multiplied by &, will each consist of terms propor-
tional to the thickness & and terms proportional to magnitudes
consisting of the product of &°/12 by the curvatures. ki and kp
or the derivatives of these curvetures.

In the third equation, in addition to_the terms of this type,
there will enter a term proportional to 83/12 and independent of
the curvature of the shell.



NACA ™ 1241 a7

The rather extensive theoretical and experimental investiga-

tions made by the author show that for thin shells the relative
3 3

thickness &k = 8/R . < 1/30; the terms with 2_k;, & k,,
max min 12 12

3 ok 3 ok 3 ok 3 Ok ~

.5.___._1_, 8____3, 5 1 , and &2 entering in the funda-

12 da 12 da 12 OB 12 o

mental equations are factors of second-order values for the dis-

placements u and v. Without sensible error these terms, as

shown in the work on cylindrical shells (reference 7) and thin-

walled rods (reference 8), can be neglected. Correspondingly,

T, = ES (¢ +vez)
1 1-U2 1
ED
T, = —% (€ +ve,)
2" . 27
E8S
Gy = = —————— (X 4V
1 12(1-v,) (X +0%z) ,
(7.1)
EsS
Gz = - ""———2"" (X2+UX1)
12(1-v7)
ES
S, =-8, = ——w
1 2 = 2(1+v)
3
ED
Hy = - Hy = ———nu
1 2 7 12(1+v)
—t

where because of the assumptions made,



28 NACA TM 1241

1du 19 w
1 =3 53 Bt kyw
1 OB 1 ov
2 E xRty R
A2 (u\ B2 /[v)
"B \a) X <B/
X =-}.§_<.];§E)-_l__a_§§_g | (7.2)
17 A3« \Ada/ ppt 0B OB
X --li(.l_a_")-_l_?lia_z
27 "EB\BIB/ %5 o x
T=-_1_(§?x_-;§_m-.1_é4§z>
AB \3adp A dx OB B OB S

Neglecting in equations (6,2) all terms with 52/12 except

2 oA oA
for the term with o —a—<§-—l> +-a—<‘3-——1- in the last
12 AB |da \A Oa oB \B op
equation, giving according to equations (5.8) a value independent
of the curvature of the shell introducing the new func-

tions @ = ¢(a,B) and V¥ =V (a,B)

_ 1o  19¥

u"Aaa+Baa
(7.3)

_139 1%

BOB A da

After certain transformations and simplifications of equa-
tions (6.2),
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2
29 2 2 2 2 1-v° 1[0 0 \
v 2 %0 4 29 2(Ew) - (1-v)(EV,2-Lyp)w = - “fg‘.ﬁ[a'; (35) + & (A0
100 2 2y, ) A[2 (@ ). 2 a_y_)
1-v2 1

) 0
- -l em -5 e

2, + (1) W9,0 17, 7) 9+ (1-0) [ 2 <k2 éi’) _2 (kl éﬂ)] )

2
® 2y 2 2
E Ve VG w -2 [2H - (l"U)K] V= -

(7.4) /

where ¢, V¥, and w are the required functions of the displace-
ments and are invariant (relative to the directions of the coordi-
nage curves za and B at a given point of the surface) magnitudes;
Ve and V" are the differential operators of the second order

of the elliptic and hyperbolic type:

The mixed operator Hng - 1V.2 ig defined by the equation
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(7.8)

Differential equations (7.4) form a complete system of equa-
tions in the three fundamental displacement functions ¢, V,
and w.

These functions according to equations (7.3) determine the
vector of total displacement of the point (a,8) of the middle
surface and therefore by virtue of equations (7.2) and (7.1) all
the deformations and the internal axial forces and moments of the
shell.

Equations (7.4) are thus the fundamental equations of the the-
ory given here for thin shells and permit solution of the problem
of the equilibrium of elastic shells of small curvature by the
method of displacements.

The theory of thin shells can also be presented in another
more compact form, namely, in the form earlier proposed of the
mixed method by introducing only two functions, the stress func-
tion ® and the displacement function w. Setting (for X = Y = 0)

_13 (1@, 1 B3
Tl-BBB<B56>+AZBaa5m w
S 12 (L1o0), 1 0Add 7.7
T2 Aa@<A5G>+ABz B OB (7.7)
2
s, - -8 ,-i(ﬂ.-lé@é@-léﬁ.@b
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and bearing in mind the analogous equations (7.2) for Xi, Xp,
and T and equations (7.1) for Gy, Gp, and H) = - Hp, the
general equations of equilibrium and deformations of the moment

theory of shells are represented in the form of two symmetrically
constructed differential equations:

1 2y 2 2 2
o= V29,20 - (B9, 219 ) = 0

2 __2 82 2.2 (7.8)
- (@9 21 %)e - £ v i Lz =0

12(1—1:2

These equations are a generalization of the equation of Max-
well for the two-dimensional stress state of & plate and the equa-
tion of Sophie Germain - Lagrange for the case of the bending of a
plate, inasmuch as for k; = kp = O (the case of a flat plate)

they break down into the well-known equations from the theory of
elasticity

29 2
Ve Ve =0
o0 2 12(1-) (7.9)
v v W = e 7,
e e 3
E8

in arbitrary (for Ve2 determined by equations (7.5)) orthogonal
coordinates.

If in the second of equations (7.8) the term with 8°/12 1is
neglected, the fundamental equation of the momentless theory of
shells results:

(8V,2-19,%)0 = z (7.10)

After determining the functions ¢ and w, the forces T,
and T, are found fram equations (7.7), the moments Gy, G,

and H from equations (7.2) and (7.1).

These forces and moments will satisfy the equations of equil-
ibrium
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3B
3

) OA . O OB
FB(ATE)'TISEJ'a_E(BSl) 826@+ABkN + ABY = O

%(BTl) - T -%(ASZ)+Slg—§+ABk1N1+ABX=O

0
- (kqT+kpTp) + 2{15 [a: (BN;) + a—as' (ANZ)] +2=0

OB 9 OA
BH - HZ — - — (AG Gq == - ABN, = O
( 1) da OB ( 2) T OB 2

&l

(AHZ)-111§§+_(BG)-GZ + BN, = O

o

Sl +Sz + lel + szz = 0

(7ffi)

for X =Y =0 with an accuracy up to the terms ABk;N; and
ABkpNo, 1n the first two equations and the term kjH; + kzﬁz in
the last equation, which as magnitudes proportional to k38 /12
and k0 /12 (by virtue of the fourth and fifth equations of (7.11)

and the relations (7.1) and (7.2) for the moments) are taken equal
to - zero.

In neglecting in the first two equations the terms with Kk N;
and kpNo, an error is admitted of the same order as that in the

general theory in replacing the last of equations (7.11) by the
approximate relation S; = - S;.

(7.12)

which constitute a generalization of the well-known equations of
the theory of the bending of a plate.
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8. Circular Cylindrical Shell. Particular Cases. - For the
coordinates of a and B, the distance to the point considered
along the generator and the transverse arc, respectively, of the
middle surface are taken.

Then, evidently A = B = 1. Equations (5.8) for k; = 0 and
ko = 1/R = constant assume the form '

™~

Ag = g& + %% + kow + w¥

2 2

Ow Ow 2 )
A = = | == 4+ —= + kK ow] + kow¥*
1 (&12 BBZ 2 2
Ap = kg

) (8.1)

1(3v _du
2\da OB

k2 (3v  du
X1=+'2—<—E+'a—ﬁ-

Ko [ 3% ou
X2=-_2-_._é.+k28_B. )

Equations (5.4) may be presented with the aid of table 1, con-
taining the differential operators.

bas
o
"
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In this table X, Y, Z, and Z* denote free terms depend-
ing on the internal forces (my, and are taken equal to zero).
The differential operators referring to the corresponding func-
tions are indicated. These operators form a symmetrical differen-
tial matrix. The elements of the matrix symmetrical with respect
to the diagonal terms have the same expressions, a consequence of
the theorem of reciprocal work.

For k2 = 0, equations (8.2) break down into the following
equations (likewise symmetrically constructed):

2
(sz)-a—g.wa%(x) PN }-x=ow
3% v v, w1 L |
— A = = 0
Ckfu) o8 + (M2p) — BBZ + ¥ + B *s Y (8.3)
au 5u 2 1
== - w* 2u)w* - =7 =0
a@ BB RYCW* + (A+2p) N
J
and the equation for the bending of a plate
vovew = __ig_.g z (8.4)
(A+2u)8

Equations (8.3) are, in a certain sense, a generalization of
the problem of the two-dimensional stress state of a plate and per-
mit determining the stresses and the deformations of the plate
under the action of two mutually balancing concentrated forces

applied on the planes 7y = + l 5 and y = - % d and acting normal

to the middle surface. 1In the case of the homogeneous problem,
the first two equations of (8.3) may be satisfied by setting

(8.5)

w* = (\+2u) VEVRD

where @ =@ (a,f) is an arbitrary function. The last equation then
becomes
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v2r2ee . 20 g2q20 7 (8.6)
N+2p

and therefore the function Va© - 4(\+u)/(M+2u) 1is biharmonic.

The magnitudes u, v, and w* determine the strains e,,,
®ggs ©qps and e, and therefore the stresses O, % » and
Tap The remalning stresses, as in the general case of the shell,

must be found from the condition of equilibrium.

In the seame manner as the particular case of equations (8.2),
there can be obtained the fundamental equations for the circular
arch with account taken of the extensional deformations of the arch
in the direction of the normal to its axis. In this case,the dis-
placement v must be considered equal to zero and the remalning
magnitudes u, w, and w* considered only as functions of B.
Equations, which generalize the well-known equations of Boussinesq,
are obtained.

For
¥ = 0 )
Ev
A= —3
-~ S
b
2(1+v) J

(where V is the Poisson coefficient), equations for the circular
cylindrical shell shall be obtained in the three functions u, v,
and w. The last of equations (6.2) drops out and the remaining
ones, in passing to the relative coordinates so that A = B = R,
may be represented with the aid of table 2.
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The system of the three equations (8.7) may be reduced to an
equivalent single equation of the eighth order. Following Galerkin
(references 7 and 8), the first two equations (8.7) may be substi-
tuted for X =Y = 0 by introducing a new function ¢ = ®(a,B)
and expressing in terms of this function the displacements u, v,
and w by the equations

S ) 3 3
wo o2 (2R <I>>+ 0 _, 9% )
d®  dpt/  dadp da3
2 3% 3% R
v = 2c <8a,488 + Ba26[53> - (2+v) ?3;2_83- - 56—3 S (8.9)
4 4 4
v e 2 vz 62¢ 5+
3 afop?  op J
The last of equations (8.7) assumes the form
4 4
cz(vzv2 + 2V2 + l)VZV%D - 202(1-1))(/\a T - 2 = Vz® +
oo a0
(1- ) o (1) .- o
dat 12 Ee
(8.10)

Equation (8.10) is the fundamental equation of the circular
shell. In this equation

4 4 4
v2v2=54+2 2 2+a4 (8.11)
do da. OB oB

For comparison, there are presented the equations obtained on
the basis of the existing moment theory of Love. These equations,
given for example in the book of Timoshenko, mey also be repre-
sented with the aid of table 3.
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In comparing the equations of table 3 with equations (8.7)
(given in table 2), it is noted that in equations (8.12) there are
absent, in the first place, certain terms arising from the moment,

namely, the terms with c® = 82/(12R%); in the second place, the
differential operators (of the second of the third equation and
third of the second) are asymmetric. The absence of symmetry in
equations (8.12) is in contradiction to the fundamental theorems
of the energostatic elastic body. For this reason, the existing
theory of shells starts from a number of classical problems of the
mechanics of elastic bodies.

The previously mentioned defects of equations (8.12) may lead
to a fundamental error in the problem of the vibration of shells.
Given any three independent forms of vibration with the correspond-
ing displacements u, ¥V, and W and applying the method of Gal-
erkin to equations (8.12), there is obtained for the frequency of
the vibrations a cubical equation, which being represented in the
form of & determinant of the third order (corresponding to the
mechanical significance of the problem) has an asymmetric struc-
ture. Due to this asymmetry, two of the vibration frequencies for
arbitrarily chosen forms of u, v, and W may receive imaginary
values, a result that is likewise in contradiction to the theory
of small vibrations of elastic bodies.

The absence of symmetry in the equations of the moment theory
of cylindrical shells was noted in previously published papers on
the theory of shells and thin rods (reference 10). In these
papers are glven equations of the strength, the stability, and the
vibrations of shells of composite systems and rods possessing col-
lateral auxiliary differential operators of the required functions
of symmetric structure. The recent works on shells (reference 7),
which improve to a greater or less degree the moment theory, suf-
fer from the defects pointed out here.

9. Spherical Shell. Generalization of Equation of Sophie-
Germain - Lagrange. - In this case,

ky = k; = k = 1/R = constant

H=k (9.1)

L=20



NACA TM 1241 41

From equations (5.8),

AO=9+2kw+w* w

Ay = - o - 21w + 2k ,
b - (s.2)

Xy =Xy = 0 )

The system (5.4) leads to an equivalent system of the form

2
N+20 )70 + 2ukP0 + 2(Mu)kVow - (M2u) ?—z K20 %% + AVE* =

1119 (Bx) + 2 (ay
“B[aa< ) aB( )
2()\+u)k6-(?\+2u)1-kv +(>\+2p) VVw v = 8 &2, .
52
40v) Ko - (3hv2u) 2= kv 2% + 2Nk = 515-
82 . 2 82 2 1
)\6-(3)\+2u)-f2-ka+2>\hr-u—-Vw*+()\+2u)w* -8— Z%
KX = - = 1| S -
vx+ X 55 2B acb(mr) (Axﬂ
Y
(9.3)

where 6 1s the volume dilation of the shell for the tangential
deformation and 2X is the normal rotation:

11|90 )
0 = E [& (Bu) + SE (AVﬂ
(9.4)
1 ]9 o)
x = EE[EE ®7) -5 “‘“ﬂ

The symbol Vzv is the differential operator of the second order
(operator of Beltrami for the sphere):
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AB aa Aaa aas(%%ﬂ (9-5)

In deriving equations (9.3), 1 + k%82/12 m1 is assumed
because of the smallness of the term k£82/12 as compared with
one.

The first three equations of (9.3) form a complete system hav-
ing a symmetric structure with respect to the functions 6, vzw,
and Vew*. The fourth equation, independently of the first three,
determines the normal elongation.

In the case of a clogsed spherical shell under the action of
normal rotation on the inner and outer surfaces for constant (inde-
pendent of a,B) intensities of these pressures, the differential
terms drop out, X =Y = O and then

6=x=0 T

4()»+u)k2w + 2\kw* = % & (9.6)

2hEw + (M2p)w* =
5 Y,

where by virtue of equations (5.5) and (5.7)

+ % o) W
7 = |(1+k7)2 o, | N
-55 L
(9.7)
1
. +§8
7% = l(1+k7) 70, N
2%

If w* 1is set equal to zero and correspondingly the third of
equations (9.3) is neglected, then for A= Ev/(1-v2), p = E/2(1+v)
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da. B

1-17

2 2 2

) 2 8% 292 8~ . 2.2 2

-2 120 4 (1+v)k6 + 2 VYR 4 (1-v) K82y 4 2(14+v)Kew = 12X 7
12 + (L+0)ko + = v + (1-v)3 v + 2(1+v) 5

; |
V20 + (1-v)K°0 - i’—z KoV 4+ (Lev)kVow = - 222 L [—— (BX) + < (AYEP

2 2y _ _l+v 1 |3 .9
VEX 4 KX = - 2 AB[& (BY) - o (AX)]

(9.8)

For k = 0, the first two of these equations break down into
the equation of Lamé

2
v2g = - 1= 1 [i (BY) + 'a% (Axﬂ (9.9)

which refers to the problem of the two-dimensional stress state of
a plate of thickness &, and the equation of Sophie-Germain-

Lagrange
3
z 6): -E§-§-) (9.10)
12(1-v°)

which refers to the problem of the bending of a plate.

VZVZW =

o=

By eliminating the function 6 from the first two equations
of (9.8), there is obtained

_Jﬁ_-w%%%+&%%%)+ﬂW%+%%fw
12(1-1F)

1 k|9 D
= 5 (1+v) E[&T (BX) + 7 (Alil - > (9.11)

oz 4 w2 [z B2k [ Ey )
(1-v)k°Z + Vv (; = [éa (BX) + 5 (AY) )

Equation (9.11) is the fundamental equation of the spherical
shell with inextensible normal element and constitutes a natural
generalization of the equation of Sophle Germein -Lagrange for
the bending of a plate.

Vv




44 NACA TM 1241

Having determined the deflection w and the normal expansion
from the third of equations (9.8), the tangential displacements u
and v can be determined by the equations

2 h
u=-_&_.Eli(em-%kv%%_;%a_miig-1+v2x
(1-v)x° A x> B OB ESk L
2
v -—l—-—z-}-ga-(6+2kw-§—kv2w>-—l§%§+i—-l—g—1-l*"zY
(1-v)x° B OB 2 X B OB pai )
(9.12)
where
2 2
_. 8% ee. 8%k 2
12(1+v)k 6(1+v)
(9.13)
(1-v)8 1 1-v
A2 BX AY = 7
12E ABBo,()+ ()+E8k

The theory of the spherical shell for thick shells (equa-
tions (9.3)) as well as for moderately thick shells (equations (9.8)
and (9.11)) have been presented. The fundamental functions chosen
6, w, X, and w* are invariant relative to the direction of
the coordinate lines a,B passing through a given point on the
gsphere.

It follows that the equations given are valid for any system
of coordinates on the spherical surface. The choice of coordinates
determines only the differential operator Vz. If for the coor-
dinates ao,B the geographical coordinates were taken, taking a
as the latitude and p as the longitude, then for k = 1/R, A=R
and B = R 8in a so that

2 2
2 3 3 . 1 d )
v° = ._.(60‘2 + cot o a—a"+ ;—i—n-z—;-a—ﬁ’z- (9.14)

For an arbitrary load (nonsymmetrical problem), equations (9.3)
and in the particular case (for w* = 0) equations (9.8) or (9.11)
are Integrated by the method of separation of variables with
respect to the variable B in trigonometric functions and with
respect to the variable o 1in Legendre functions.
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10. General Equations for Stability of Shells - Special Cases. -

It 1s assumed that the shell has a given system of stresses char-
acterized only by the tangential (normal and shearing) forces Tlo,
7,0, and S and in equilibrium with the external forces. It
shall be considered that the external forces are given with an
accuracy up to one parameter, for example, the intensity of any

of the components of the external load. By assigning different
values to this parameter, different stress states are obtained.

In a particular case, the internal forces Tlo, TZO, and S°
may be proportional to the intensity of the external load. For a
certain value of the load parameter, the equilibrium of the shell
becomes unstable.

From the stress state T0, To,0, and SO, the shell passes
to another state T10 + T1, T20 + Ty, S0+, G, Gz, H, Ny,
end N, where Ti, Tp, . . . , Ny are internal forces arising
on the loss of stability. It shall be assumed that the forces Tj,
To, « « ., No and the corresponding deformations are infinitely
small magnitudes. Because the change in the deformed state of the
shell, associated with loss in stability, is characterized by a
change in form of the middle surface, it is necessary, in order to
obtain the equations of stability, to take into account the varia-
tions of the magnitudes referring only to the second-quadratic form
of the surface.

The stability equation is obtained from the equations (6.2)
and (6.3) given for shells of medium thickness or from equa-
tions (7.4) for thin shells. It is necessary in the first place
to refer all static and kinematic magnitudes entering these equa-
tions to varlations of the stress and the deformed state of the
shell that arise on loss of stability and in the second place to
consider the components X, Y, and Z as those surface forces
that are obtalned when an element of the shell AB do df with the
contour forces T10 + Ty, Tp0 + Tp, SO+ S, . .. 1s carried
into the new deformed state determined by the displacements wu, v,
and w.

With the passage of the shell into the deformed state, the

normal to the middle surface will have a new direction determined
by the angles of rotation

4 = ku -

=
wie &1

ow

(10.1)
%)

a4 = - <%2V -
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relative to the tangents to the lines o = constant and B = constant
of the initial state. For the components X, Y, and Z of the
vector of the reduced surface force on the axes of coordinates «a,

B, and ¥ of the movable trihedron of the middle surface, small
magnitudes are readily obtalned with an accuracy up to sqggnd order

e (e 2200 (i -3 2) 50]
l1ow\,O 1low) .0
Y= - kz[(kzv - g gg)Tz +<k1u - K aa) S ] >
(10.2)
z=-21 .?..B[(klu - lé‘i)'l‘lo + (kzv - la--‘l)so] -
AB [da A % B 0B

By substituting the values of X, Y, and Z +thus obtained
in equations (6.2) and neglecting in these equations m, and g,
the general equation of stability of the shells is obtained. In
the case of a thin shell, X, Y, and Z must be substituted in
equations (7.4).

In elther case, there is obtained with the accuracy of the
~ load parameter a complete system of homogeneous differential equa-
tions in the required functions that determine the deformations of
the shell associated with logss in stability. To this system are
added the boundary conditions (homogeneous).

The critical stress state T;0, T,0, and SO determined by
the parameter of the externmal load entering linearly in egua-
tions (10.2) is thus determined by solving the homogeneous boundary
problem described hers.

Inasmuch as of the three variables u, v, and w the normal
displacement w has the principal effect on the change in shape of
the shell, in equations (10.2) the terms with the tangential dis-
placements u and v may be neglected. Then
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\
1 ow 1 ow
X=k1<T10K$+SO-B-§B‘>
1 ow 1l ow
Y=k2<TZO:‘B-SE+SOZ$) >
L2 (poB&), 2 3@) _5_(03w> a(oa_w
Z‘Aa{aa( L) a(TZ VAN VAR AN

(10.3)

In the case of a thin shell,the components X and Y, being
proportional to the curvatures k; and ks, may be taken equal to

zero. On the basis of equations (7.8)

i%a' 29520 - (HV,Z -L¥,)w = 0 \
3
21w - Eo o el s 1|2 (0220
R 12(1-1%) e v°w+AB[6a N RSt
12).23) 5 (2]
as(zBaB S8 s EH)-0
(10.4)

These equations constitute the general equations of stability
of thin shells in the two functions ¢ and w and permit deter-
mining the critical stresses for very general agsumptions with
regard to the given stress state.

The general theory of the stability of shells has been pre-
sented exactly as given by equations (10.2), (6.2), and (6.3) and
approximately as given by equations (10.3), (7.4) or (10.4).

This theory represents a considerable generalization of a num-
ber of problems on stabllity of elastic systems, starting with the
simplest problem of longitudinal bending and ending with the sta-
bility of shells of arbitrary shape for arbitrarily glven initial

stress state T10 = 7,%a,), T,0 = T,0(x,p), amd SO = §0(a,p),
the critical value of which is determined.
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Thus, for example, in equations (10.4) setting k; = ky = O,
from the second equation (the operator

kq+k ks -k
By 2 - Lth e N Ve2 S th becomes zero), the

€

equation of stability of a plate in arbitrary orthogonal curvilin-
ear coordinates o and f are obtained. For

A=B=1
3,0 g0
e e 22 0

do OB
.a..?.?_(z + a_s(z = 0
oB oo

there is obtained

3 2 2 2
B @ -1,0 §—‘21 - 1,0 a—‘z-f 220 S¥ o (10.5)
12(1-17) % 38 S0.0B

Equation (10.5) is the well-known equation, in rectilinear
coordinates, of the stability of a plate loaded by forces on the
boundary.

k = 1/R = constant, S° = 0, and
constant, the following equation is obtained:

For kl = k2
Tlo = TZO = -pR/2

it

2g2 2 2 2 2 3 2
—ﬁTvevevew+vew+1’3-vew=o (10.6)
12(1"‘]) ZES

which refers to the stability of a spherical shell of radius R,
under an internal pressure p = constant, the parameter of this
equation being p.

A cylindrical shell will be considered, starting at first
from the more accurate equations (10.2) and (8.7). If o and
are the absolute coordinates, A =B = 1. Equations (10.2) for
kl =0 and kz = constant become
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X=0 1
ow ow
Y=-k [TZO (kzv-ég)-sogﬂ \
_ 3 [pow g0 _B_V}E_OQ_-O -G_W]
z SE[T = -8 (kzv aB)+aﬁs o -T2 (kzv SB) )
(10.7)

—_— == 0, —— = and A =B =R (hence
S toe T B T Y (
a and p are relative coordinates), equations (10.7) become the
following:

X=0
Y=~ —l— [I‘zo v - -a—w.. - SO .Bl]
B ( aﬁ> . ? (10.8)

N
i

1 (g 0% _ Oi(_éw_) -
RZ [Tl aaz T2 OB aB +8 2 80,5[3 BGJ

On the basis of equations (10.8), table 2 (equations (8.7))
assumes the form given by table 4. Equations (10.9) (table 4) in
the secondary operators possess also in this case a symmetrical
structure, a fact that as already noted is in agreement with the
theorem of recifrocity and therefore the critical forces will
always be real.

lThe equations that are used by Timoshenko (reference 3) and
other authors (references 7 and 8) are assymetric with respect to
the secondary terms and consequently do not correspond to the funda-
mental theorems of the theory of elasticity.
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These equations are the general equations of stability of a
circular shell, obtained in strict correspondence with the funda-
mental hypothesis of Kirchhoff - Love and make it possible to con-
gilder a number of problems of practical interest on the determina-
tion of the critical loads of the shell.

Because the components X, Y, and Z determined in the gen-
eral case of the stress state by equations (10.8) are obtained
with account taken of the exact values of the angles of rota-
tion q; and Qqy, of the normal of the shell, equations (10.9)

are applicable also to shells of medium thickness.

In the case of a shell for which &/R 5;1/30, the tangential
contour force Y represents, according to equations (10.7), a mag-
nitude that is small in comparison with the normal force Z. The
tangential contour displacement v on deformation of the shell
accompanied by the change in shape of the cross section is a mag-
nitude that is likewlse small compared with the normal displace-
ment w. By assuming for a thin shell the magnitude Y to be
equal to zero and neglecting in the last of equations (10.8) the
tangential displacement v,

_1[3 (podw oa_w) i(oa_z oa_w>]
Z = = [éa (?1 St S 5 + S Tp 38 + 8 o (10.10)

The general stability equation of a shell for given assumptions
as to the force Y may be obtained from equation (8.10) by sub-
stituting in this equation the value of Z determined by equa-~

tion (10.10). This equation has the form®

4 4
c2(v4+2v241) V40 - 2c2(l-v)(a .9 > V2o 4+ (1-v%) o
) 2.2 o ,

da da OB
’ ,
l_-_v__a_<ﬂ:°_§.v4¢ S0 O v _Q.(TO_B_V% SO..B._V%)}=0
{ 18a+36)+6323|3 T e J

E5 Loa

(10.11)

zlf in equations (10.11) the second and third terms of the
first component and the complete second component are neglected,
the approximate equation for the stability of a thin cylindrical
shell shall be obtained.
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Equation (10.11) for these assumptions is equivalent to the
system of equations (10.9) in the three functions. The displace-
ments u, v, and w are determined in terms of the fundamental
function ® by equation (8.9). It should be noted that
T20 =80 = 0, that is, in the case of the stress state character-
ized only by longitudinal normal forces Tlo (central compression,
for example, pure bending, eccentric action of longitudinal com-
pressive or tensile forces, and so forth), these assumptions drop
out. The equations given here are the general equations of the
stability of a cylindricel shell from which the critical stress
can be determined for very different assumptions both as regards
the given external forces and as regards the boundary conditions.
Thus, for example, the equaticns of stability can be obtained for
the following cases:

1. Central compression of a shell by a force P

3. Shells under the action of an external normal pressure and
immovably clamped at the longitudinal edge against displacements u
and w

7,0=58%=0

Tzo = - QR

4. Shells under the simultaneous action of a longitudinal com-
pressive (or tensile) force P and twisting moment M

Tzo =0
0 P
.Y = g
1 " ¥Im
0 M
8° = 2

2nR
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In this case for the load parameter, thers may be taken the
magnitude P for a given value of the magnitude M or M for a
given value of P, or the ratio of these values as a function of
the conditions of the problem

5. Shells under the action of only a single bending moment
(pure bending) or of a moment and a longitudinal force (bending
with tension or compression)

6. Shells under the action of & transverse load producing at
the sections o = constant longitudinal, normal, and shearing
forces Tlo and SY, determined by the usual elementary theory

of the bending of beams, and so forth

In all of these cases except cases 5 and 6 the differential
equations of stability have constant coefficients.

The critical stresses are determined by solving the homogen-
eous boundary problem by equation (10.11) or in the case of a more
accurate solution by the system of equations (10.9) and the homo-
geneous boundary conditions. If the shell of length 1 on each
of the curvilinear edges o = 0. and o« = 1/R is hinge-supported
on & diaphragm that is rigid in its plane and flexible in the trans-
verse plane, the function ¢ corresponding to these boundary con-
ditions may be approximated for the closed shell in the form of a
double trigonometric series:

% = :5:':§: A, sin mﬁgm cos nB (myn=1,2,3, ...)

and for shells of open profile in the form of a trigonometric series
in only one variable a:

quzz\ym(e) sinm-l‘zg?- m=1,2,3, ...)

where the function V.(B) 1is determined by ordinary differential
equations (homogeneous with one parameter) and the boundary con-
dition (likewise homogeneous), which must be given on the straight
edges of the shell. ’
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REMARKS

The theory given is of general character and permits solving
a number of practically important problems on the strength, the
stability, and the vibrations of shells. Thus for example:

1. Computation of shells by the method of the theory of com-
plex varisbles. - In reference 12, it is shown that for shells char-
acterized by middle surfaces of the second order with positive
Gaussian curvature (spherical, elliptical, and parabolical) the
equations of the momentless theory characterized by the mixed 4if -

ferential operator Hve2 - Lth leads, through transformation of

the independent variables, to the Cauchy-Reiemann equations.

These investigations show that the more accurate equations (7.8)
relative to the moment theory of thin shells will be of the ellip-~
tic type for middle surfaces of the second order. These equations
for such surfaces also lead to the equations of Cauchy-Riemann.

It then follows that the computation of such shells by the moment
theory may be effected by the methods of the theory of functions
of a complex variable by developing and generalizing the known
methods of Muskhelishvili (reference 13) on the two-dimensional
problem of the theory of elasticity. In particular, it is of
interest to determine the stresses and the deformations of shells
of spherical, elliptic, and parabolic types due to the action of
a concentrated force applied at any point of the middle surface.

2. Circular cylindrical shell under the action of a concen-
trated force. - The solution of this problem may be obtained by the
integration of equation (8.10) or for the thin shell of equa-
tions (7.8) by the method of separation of variables. (In this case

HVe2 - LV’h2 = ko Q_E.) The functions required may be approximated
oo

by trigonometric series in one of the variables o or B, as in

the method of Failon-Ribier for the two-dimensional stress state of

a rectangular plate and in the method of Morris-Levy for the case

of the bending of such a plate. The Green Function may be repre-

sented by a Fourier Integral.

3. Tension in a closed circular shell having somewhere on the
surface an opening of given shape.

4, Torsion of a circular shell weakened by an opening. - Both
of these problems may be solved also with the aid of trigonometric
series.
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5. Stability of an open circular shell in the case: (a) cen-
tral compression, (b) pure bending, (c) compression with bending,
and (d) bending by given transverse forces. - This problem is
solved by applyling to the stability equations given ordinary trig-
onometric series in the variable along the generator.

6. Stability of a closed circular shell in torsion. - The
required functions in this case cen be given in the form of trig-
onometric series in the variable B (in the direction of the trans-
verse arc).

7. Stability of a spherical shell under the action of an external
hydrostatic pressure. - The differential equation corresponding to
this problem can be integrated by the method of separation of the
variables by applying trigonometric functions and functions of
Legendre.

Translated by S. Reiss
National Advisory Committee
for Aeronautics.
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